Como alternativa a los métodos tradicionales, una tesis doctoral plantea técnicas de visión artificial con imágenes RGB para conocer el rendimiento final de la vid 100 días antes de la vendimia
Fernando Palacios López ha desarrollado una tesis doctoral en la Universidad de La Rioja que plantea la viticultura digital –a través de técnicas de visión artificial, aprendizaje profundo y automático- como alternativa a los métodos tradicionales para estimar los componentes del rendimiento de la vid. Usando como datos imágenes RGB de la vid adquiridas en continuo mediante una plataforma móvil, en condiciones de campo y de forma no invasiva, pueden detectarse componentes que sirven de indicadores del rendimiento final entre dos meses y 100 días antes de la vendimia.
Frente a los métodos tradicionales para obtener estos componentes, la visión e inteligencia artificiales ofrecen una alternativa menos tediosa, que requiere menos tiempo y que permite procesar más datos.
En primer lugar, Fernando Palacios ha desarrollado un algoritmo de visión artificial para extraer las características morfológicas de los racimos, y un modelo de aprendizaje automático para evaluar su compacidad en condiciones de campo, demostrando ser una alternativa más objetiva que la evaluación visual tradicional.
En segundo lugar, el doctor Palacios López ha abordado la cuantificación del número de flores de la vid por cepa. El algoritmo desarrollado (basado en aprendizaje profundo) permite, tras una segmentación semántica individual de cada flor, obtener un indicador de rendimiento cerca de 100 días antes de la vendimia.
En su tesis, Fernando Palacios también concluye que la visión artificial puede emplearse para evaluar el rendimiento en cepas total y parcialmente defoliadas en la zona productiva, combinada con un modelo capaz de capturar la variabilidad en el estado del dosel de diferentes viñedos.
Por otro lado, la combinación de la visión artificial, el aprendizaje profundo y el aprendizaje automático le ha permitido al doctor Palacios López cuantificar el número de bayas de la vid en tamaño guisante por cepa, superando parcialmente los problemas de oclusión de las bayas. En su tesis demuestra cómo esta herramienta podría ser muy beneficiosa para desarrollar un indicador de rendimiento casi dos meses antes de la vendimia sin aplicar una defoliación completa intensiva de las cepas.
Además, el modelo de estimación desarrollado en la tesis ha demostrado ser preciso a la hora de estimar el rendimiento en cepas de cabernet sauvignon, malvasía, moscatel, syrah, tempranillo y verdejo, no solo cuando estas variedades de vid estaban ya incluidas en el modelo, sino también cuando eran previamente desconocidas para el mismo.
La tesis ha sido dirigida por Javier Tardáguila y Paz Diago, y ha logrado la calificación de sobresaliente ‘cum laude’ con mención internacional.
Suscríbete gratis a nuestro boletín.¡Pincha aquí!